If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+140x-2000=0
a = 4; b = 140; c = -2000;
Δ = b2-4ac
Δ = 1402-4·4·(-2000)
Δ = 51600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{51600}=\sqrt{400*129}=\sqrt{400}*\sqrt{129}=20\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-20\sqrt{129}}{2*4}=\frac{-140-20\sqrt{129}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+20\sqrt{129}}{2*4}=\frac{-140+20\sqrt{129}}{8} $
| 30-10x=100 | | 16x+74=90 | | 1=c-1/3 | | 2x-7=2(x+4)=3x | | 5x,+7=2x-8 | | 8=4w÷3 | | x-(-24/5)=37/10 | | 1.5=d+.8 | | -3(1+9k)-7(-7-12k+1)=1+10k-11-6k | | 18+2(b+1)=6 | | 3/5=6y/20 | | 25+75x=180 | | 7x=49=2x+94 | | 10m=250 | | 7x+3-3x=-7(x-3) | | 2w=6w-40 | | 1/3y+6=1/5y | | 7x+3-3x=4(x-2 | | -3(1+q)=27 | | 120=12n | | 9=21-c9 | | 24=y/3+13 | | -12n+12(4n-4)=6(1+5n | | 2/7+c=-5/6 | | F(x)=3x^2+20x | | -12n+12(4n-4)=6(1+5n) | | -2x+-2+3=7 | | (9x-25+x)=(x+50=2x-12) | | w/2-1=-7 | | 9x=9x+14 | | 6/5=y-4/5 | | 2(1/2q+1)=3(2q+1)+4(2q+1) |